

Squint: Simple query interface for tabular data.

Version 0.2.0.dev0

Squint is a simple query interface for tabular data that’s light-weight
and easy to learn. A core feature of Squint is that the structure of a
query’s selection determines the structure of its result. With
it you can:

	Select data using Python literals—sets, lists, dictionaries,
etc.—and get results in the same format.

	Aggregate, map, filter, reduce, and otherwise manipulate data.

	Lazily iterate over results, write them to a file, or eagerly
evaluate them in memory.

	Analyze data from CSV, Excel, SQL, and other data sources.

Documentation

	Tutorials
	Making Selections

	Building Queries

	Using Results

	How-To Guide
	How To Install Squint

	How To Convert an Element’s Type

	How To Convert a Container’s Type

	How To Select Single-Item Inner-Containers

	How To Select Exotic Data Types

	API Reference
	Select

	Query

	Result

	Predicate

Other Resources

	Squint on PyPI [https://pypi.org/project/squint/]

	Squint on GitHub [https://github.com/shawnbrown/squint]

Tutorials

These tutorials are written with the intent that you follow along
and type the examples into Python’s interactive prompt yourself.
This will give you hands-on experience working with Select, Query,
and Result objects.

	Making Selections
	Get Started

	Inspect Field Names

	Select Elements

	Select Groups of Elements

	Narrowing a Selection

	Getting the Data Out

	Building Queries
	Get Started

	Creating a Query Object

	Aggregate Methods

	Functional Methods

	Data Handling Methods

	Data Output Methods

	Method Chaining

	Using Results
	Get Started

	Creating a Result Object

	The evaltype Attribute

	Eager Evaluation

	Lazy Evaluation

Making Selections

The following examples demonstrate squint’s Select
class. For these examples, we will use the following data set:

	A

	B

	C

	x

	foo

	20

	x

	foo

	30

	y

	foo

	10

	y

	bar

	20

	z

	bar

	10

	z

	bar

	10

Get Started

Download the data set as a CSV file:

example.csv

Start the Interactive Prompt

Open a command prompt and navigate to the folder that contains
the example data. Then start Python in interactive mode so you
can type commands at the >>> prompt:

$ python3
Python 3.8.0 (default, Oct 16 2019, 12:47:36)
[GCC 9.2.1 20190827 (Red Hat 9.2.1-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Supported Formats

Using Select, you can load data from difference sources:

	CSV files

	Database connections

	MS Excel files

	DBF files

	Pandas objects: DataFrame, Series, Index, or MultiIndex

You can also use shell-style wildcards to load multiple files
into a single Select object:

select = Select('*.csv')

Load the Data

Import Squint and load the CSV data into a Select object:

>>> import squint
>>> select = squint.Select('example.csv')

Inspect Field Names

The fieldnames attribute contains
a list of field names used in the data:

>>> select.fieldnames
['A', 'B', 'C']

Select Elements

A Select object can be called like a function—doing so returns
a Query object.

Select a list of elements from column A:

>>> select('A')
Query(<squint.Select object at 0x7f02919d>, ['A'])
---- preview ----
['x', 'x', 'y', 'y', 'z', 'z']

Above, look at the “preview” and notice that these values come
from column A in our data set.

Select a list of tuple [https://docs.python.org/3/library/stdtypes.html#tuple] elements from columns
A and B, ('A', 'B'):

>>> select(('A', 'B'))
Query(<squint.Select object at 0x7f02919d>, [('A', 'B')])
---- preview ----
[('x', 'foo'), ('x', 'foo'), ('y', 'foo'), ('y', 'bar'),
 ('z', 'bar'), ('z', 'bar')]

Select a list of list [https://docs.python.org/3/library/stdtypes.html#list] elements from columns
A and B, ['A', 'B']:

>>> select(['A', 'B'])
Query(<squint.Select object at 0x7f02919d>, [['A', 'B']])
---- preview ----
[['x', 'foo'], ['x', 'foo'], ['y', 'foo'], ['y', 'bar'],
 ['z', 'bar'], ['z', 'bar']]

The container type used in a selection determines the container
types returned in the result. You can think of the selection as
a template that describes the values and data types that are
returned.

Note

In the examples above, we did not specify an outer-container
type and—when unspecified—a list [https://docs.python.org/3/library/stdtypes.html#list] is used. So
the outer-containers for all of the previous results were lists:
a list of strings, a list of tuples, and a list of lists.

Specify Outer-Container Data Types

Compatible sequence and set types can be selected as inner- and
outer-containers as needed. To specify an outer-container type,
provide one of the following:

	a container that holds a single field name

	a container that holds another container (this second,
inner-container can hold one or more field names)

Select a set [https://docs.python.org/3/library/stdtypes.html#set] of elements from column A, {'A'}:

>>> select({'A'})
Query(<squint.Select object at 0x7f02919d>, {'A'})
---- preview ----
{'x', 'y', 'z'}

Select a set [https://docs.python.org/3/library/stdtypes.html#set] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple] elements from
columns A and B, {('A', 'B')}:

>>> select({('A', 'B')})
Query(<squint.Select object at 0x7f02919d>, {('A', 'B')})
---- preview ----
{('x', 'foo'), ('y', 'foo'), ('y', 'bar'), ('z', 'bar')}

Tip

As mentioned previously, the default outer-container is a list,
so when an early example used select('A'), that was actually a
shorthand for select(['A']). Likewise, select(('A', 'B')),
was a shorthand for select([('A', 'B')]).

Select Groups of Elements

To select groups of elements, use a dict [https://docs.python.org/3/library/stdtypes.html#dict] (or other mapping
type) as the outer-container—this dictionary must hold a single
key-value pair. The key elements determine the “groups” used to arrange
the results. And value elements are assigned to the same group when
their associated keys are the same.

Select groups arranged by elements from column A that contain
lists of elements from column B, {'A': 'B'}:

>>> select({'A': 'B'})
Query(<squint.Select object at 0x7f02919d>, {'A': ['B']})
---- preview ----
{'x': ['foo', 'foo'], 'y': ['foo', 'bar'], 'z': ['bar', 'bar']}

Select groups arranged by elements from column A that contain
lists of tuple [https://docs.python.org/3/library/stdtypes.html#tuple] elements from columns B and C,
{'A': ('B', 'C')}:

>>> select({'A': ('B', 'C')})
Query(<squint.Select object at 0x7f8cbc77>, {'A': [('B', 'C')]})
---- preview ----
{'x': [('foo', '20'), ('foo', '30')],
 'y': [('foo', '10'), ('bar', '20')],
 'z': [('bar', '10'), ('bar', '10')]}

To group by multiple columns, we use a tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of key
fields. Select groups arranged by elements from columns A
and B that contain lists of elements from column C,
{('A', 'B'): 'C'}:

>>> select({('A', 'B'): 'C'})
Query(<squint.Select object at 0x7f8cbc77>, {('A', 'B'): ['C']})
---- preview ----
{('x', 'foo'): ['20', '30'],
 ('y', 'bar'): ['20'],
 ('y', 'foo'): ['10'],
 ('z', 'bar'): ['10', '10']}

Specify Container Types for Groups

When selecting groups of elements, you can specify inner- and
outer-container types for the value. The previous groupings
used the default list [https://docs.python.org/3/library/stdtypes.html#list] shorthand. But as with non-grouped
selections, you can specify a type explicitly.

Select groups arranged by elements from column A that contain
sets [https://docs.python.org/3/library/stdtypes.html#set] of elements from column B, {'A': {'B'}}:

>>> select({'A': {'B'}})
Query(<squint.Select object at 0x7f2c36ee>, {'A': {'B'}})
---- preview ----
{'x': {'foo'}, 'y': {'foo', 'bar'}, 'z': {'bar'}}

Select groups arranged by elements from column A that contain
sets [https://docs.python.org/3/library/stdtypes.html#set] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple] elements from columns
B and C, {'A': {('B', 'C')}}:

>>> select({'A': {('B', 'C')}})
Query(<squint.Select object at 0x7fc4a060>, {'A': {('B', 'C')}})
---- preview ----
{'x': {('foo', '30'), ('foo', '20')},
 'y': {('foo', '10'), ('bar', '20')},
 'z': {('bar', '10')}}

Narrowing a Selection

Selections can be narrowed to rows that satisfy given keyword arguments.

Narrow a selection to rows where column B equals “foo”, B='foo':

>>> select(('A', 'B'), B='foo')
Query(<squint.Select object at 0x7f978939>, [('A', 'B')], B='foo')
---- preview ----
[('x', 'foo'), ('x', 'foo'), ('y', 'foo')]

The keyword column does not have to be in the selected result:

>>> select('A', B='foo')
Query(<squint.Select object at 0x7f978939>, ['A'], B='foo')
---- preview ----
['x', 'x', 'y']

Narrow by Multiple Columns

Narrow a selection to rows where column A equals “y” and
column B equals “bar”, A='y', B='bar':

>>> select(('A', 'B', 'C'), A='y', B='bar')
Query(<squint.Select object at 0x7f97893>, [('A', 'B', 'C')], A='y', B='bar')
---- preview ----
[('y', 'bar', '20')]

Only one row matches the above keyword conditions.

Narrow by Other Predicates

The argument’s key specifies the column to check and its value is
used to construct a Predicate that checks for matching elements.
In addition to matching values like 'y' or 'bar', Predicate
objects can be sets, functions, boolean values, and more.

Use a predicate set [https://docs.python.org/3/library/stdtypes.html#set] to narrow a selection to rows where
column A equals “x” or “y”, A={'x', 'y'}:

>>> select(('A', 'B'), A={'x', 'y'})
Query(<squint.Select object at 0x7f97893>, [('A', 'B')], A={'y', 'x'})
---- preview ----
[('x', 'foo'), ('x', 'foo'), ('y', 'foo'), ('y', 'bar')]

Use a predicate function to narrow a selection to rows where
column C is greater than 15, C=greaterthan15:

>>> def greaterthan15(x):
... return float(x) > 15
...
>>> select(('A', 'C'), C=greaterthan15)
Query(<squint.Select object at 0x7fa6b9ea>, [('A', 'C')], C=greaterthan15)
---- preview ----
[('x', '20'), ('x', '30'), ('y', '20')]

When functions are simple like the one above, you can use a
lambda statement rather than writing a separate function,
C=lambda x: float(x) > 15:

>>> select(('A', 'C'), C=lambda x: float(x) > 15)
Query(<squint.Select object at 0x7f5f08e4>, [('A', 'C')], C=<lambda>)
---- preview ----
[('x', '20'), ('x', '30'), ('y', '20')]

In addition to set membership and function testing, Predicates
can be used for type checking, regex matching, and more. See the
Predicate documentation for details.

Getting the Data Out

The examples so far have called Select objects and gotten
Query objects in return. While the preview shows what the
output will look like, it’s still a Query object—not the data itself.
One way to get the actual data is to use the Query’s fetch() method.

Get the data out by calling the fetch() method:

>>> select('A').fetch()
['x', 'x', 'y', 'y', 'z', 'z']

Building Queries

The following examples demonstrate squint’s Query class.
This document builds on the Making Selections tutorial.

Get Started

We will get started the same way we did in the first tutorial. Begin
by starting the Python interactive prompt in the same directory as the
example.csv file. Once you are at
the >>> prompt, import squint and load the data:

>>> import squint
>>> select = squint.Select('example.csv')

Creating a Query Object

In the Making Selections tutorial, we created several Query
objects—each call to a Select object returns a Query.

By selecting a list of elements from column C, we get a
Query object in return:

>>> select('C')
Query(<squint.Select object at 0x7ffa625b>, ['C'])
---- preview ----
['20', '30', '10', '20', '10', '10']

We can also create Queries directly using the following syntax
(although it’s rarely necessary to do so):

>>> squint.Query(select, 'C')
Query(<squint.Select object at 0x7ffa625b>, ['C'])
---- preview ----
['20', '30', '10', '20', '10', '10']

Once a Query has been created, we can perform additional operations
on it using the methods described below.

Aggregate Methods

Aggregate methods operate on a collection of elements and produce
a single result. The Query class provides several aggregate methods:
sum(), avg(),
min(), max(), and
count(). For more information see the
aggregate methods reference documentation.

Use the sum() method to sum the elements in
column C:

>>> select('C').sum()
Query(<squint.Select object at 0x7ffa625b>, ['C']).sum()
---- preview ----
100

When an aggregate method is called on a dict [https://docs.python.org/3/library/stdtypes.html#dict] or other
mapping, the groups—the dictionary values—are operated on
separately.

Use the sum() method to sum each group of
elements:

>>> select({'A': 'C'}).sum()
Query(<squint.Select object at 0x7ffa625b>, {'A': ['C']}).sum()
---- preview ----
{'x': 50, 'y': 30, 'z': 20}

Type Conversion

The Query class contains two methods that perform
automatic type conversion:

	sum()

	avg()

In the example above, column C contains str [https://docs.python.org/3/library/stdtypes.html#str]
elements. These strings are automatically converted to
float [https://docs.python.org/3/library/functions.html#float] values. The other functional methods
do not do this—use map() to convert
values explicitly.

Functional Methods

Functional methods take a user-provided function and use it
to perform a specified procedure. The Query class provides
the following functional methods: map(),
filter(), reduce(),
apply(), etc. For more information see the
functional methods reference
documentation.

Use the map() method to apply a function
to each element:

>>> def uppercase(value):
... return value.upper()
...
>>> select('B').map(uppercase)
Query(<squint.Select object at 0x7ffa625b>, ['B']).map(uppercase)
---- preview ----
['FOO', 'FOO', 'FOO', 'BAR', 'BAR', 'BAR']

Use the filter() method to narrow the selection
to items for which the function returns True:

>>> def not_bar(value):
... return value != 'bar'
...
>>> select('B').filter(not_bar)
Query(<squint.Select object at 0x7ffa625b>, ['B']).filter(not_bar)
---- preview ----
['foo', 'foo', 'foo']

Element-Wise vs Group-Wise Methods

The map(), filter(), and
reduce() methods perform element-wise
procedures—they call their user-provided functions for each
element and do something with the result. The apply() method, however, performs a group-wise procedure. Rather
than calling its user-provided function for each element, it calls the
function once per container of elements.

Use the apply() method to apply a function
to an entire container of elements:

>>> def join_strings(container):
... return '-'.join(container)
...
>>> select('B').apply(join_strings)
Query(<squint.Select object at 0x7ffa625b>, ['B']).apply(join_strings)
---- preview ----
'foo-foo-foo-bar-bar-bar'

Like the aggregate methods, when apply() is
called on a dict [https://docs.python.org/3/library/stdtypes.html#dict] or other mapping, the groups—the
dictionary values—are operated on separately.

Use the apply() method to apply a function
for each container of elements:

>>> select({'A': 'B'}).apply(join_strings)
Query(<squint.Select object at 0x7ffa625b>, {'A': ['B']}).apply(join_strings)
---- preview ----
{'x': 'foo-foo', 'y': 'foo-bar', 'z': 'bar-bar'}

Data Handling Methods

Data handling methods operate on a collection of elements by reshaping
or otherwise reformatting the data. The Query class provides the
following data handling methods: flatten(),
unwrap(), and distinct().
For more information see the data handling methods reference documentation.

The flatten() method serializes a dict [https://docs.python.org/3/library/stdtypes.html#dict]
or other mapping into list of tuple rows. Let’s start by observing the
structure of a selected dictionary {'B': 'C'}:

>>> select({'B': 'C'})
Query(<squint.Select object at 0x7ffa625b>, {'B': ['C']})
---- preview ----
{'foo': ['20', '30', '10'],
 'bar': ['20', '10', '10']}

Now, use the flatten() method to serialize this
same selection ({'B': 'C'}) into a list of tuples:

>>> select({'B': 'C'}).flatten()
Query(<squint.Select object at 0x7ffa625b>, {'B': ['C']}).flatten()
---- preview ----
[('foo', '20'), ('foo', '30'), ('foo', '10'),
 ('bar', '20'), ('bar', '10'), ('bar', '10')]

The unwrap() method unwraps single-element
containers and returns the element itself. Multi-element containers
are untouched. Observe the structure of the
following preview, {('A', 'B'): 'C'}:

>>> select({('A', 'B'): 'C'})
Query(<squint.Select object at 0x7ffa625b>, {('A', 'B'): ['C']})
---- preview ----
{('x', 'foo'): ['20', '30'],
 ('y', 'bar'): ['20'],
 ('y', 'foo'): ['10'],
 ('z', 'bar'): ['10', '10']}

Use the unwrap() method to unwrap ['20']
and ['10'] but leave the multi-element lists untouched:

>>> select({('A', 'B'): 'C'}).unwrap()
Query(<squint.Select object at 0x7ffa625b>, {('A', 'B'): ['C']}).unwrap()
---- preview ----
{('x', 'foo'): ['20', '30'],
 ('y', 'bar'): '20',
 ('y', 'foo'): '10',
 ('z', 'bar'): ['10', '10']}

Data Output Methods

Data output methods evaluate the query and return its results.
The Query class provides the following data output methods:
fetch(), execute()
and to_csv(). For more information see
the data output methods reference
documentation.

Use the fetch() method to eagerly evaluate
the query and return its results:

>>> select('A').fetch()
['x', 'x', 'y', 'y', 'z', 'z']

Use the execute() method to lazily evaluate the
query by returning a Result object:

>>> select('A').execute()
<Result object (evaltype=list) at 0x7fa32d16>

Eager vs Lazy Evaluation

When a query is eagerly evaluated, its elements are all loaded
into memory at the same time. But when a query is lazily evaluated,
its individual elements are computed one-at-a-time. See the
Using Results tutorial for more information about
eager and lazy
evaluation.

Use the to_csv() method to save the
query results into a CSV file:

>>> select('A').to_csv('myresults.csv')

Method Chaining

You can build increasingly complex queries by chaining methods
together as needed:

>>> def not_z(value):
... return value != 'z'
...
>>> def uppercase(value):
... return str(value).upper()
...
>>> select('A').filter(not_z).map(uppercase).fetch()
['X', 'X', 'Y', 'Y']

In the example above, the filter(),
map(), and fetch()
methods are chained together to perform multiple operations
within a single statement and then output the data.

Method Order

The order of most Query methods can be mixed and matched
as needed. But the data output methods—like
fetch(), execute(),
and to_csv()—can only appear at the
end of a chain, not in the middle of one.

Using Results

The following examples demonstrate squint’s Result class.
This document builds on the previous Making Selections and
Building Queries tutorials.

Get Started

We will get started the same way we did in the previous tutorials. Begin
by starting the Python interactive prompt in the same directory as the
example.csv file. Once you are at
the >>> prompt, import squint and load the data:

>>> import squint
>>> select = squint.Select('example.csv')

Creating a Result Object

Typically, we create Result objects by calling a Query’s
execute() method:

>>> select('A').execute()
<Result object (evaltype=list) at 0x7ff5f372>

We can also create Results directly with the following syntax:

>>> iterable = [1, 2, 3, 4, 5]
>>> squint.Result(iterable, evaltype=list)
<Result object (evaltype=list) at 0x7ff5f38d>

The evaltype Attribute

The evaltype attribute—short
for “evaluation type”—indicates the type of container
that a Result represents:

>>> result = select('A').execute()
>>> result.evaltype
<class 'list'>

Eager Evaluation

When a Result is eagerly evaluated, all of its contents
are loaded into memory at the same time. Doing this returns
an container of elements whose type is determined by the
Result’s evaltype.

Use the fetch() method to eagerly
evaluate the result and get its contents:

>>> result = select('A').execute()
>>> result.fetch()
['x', 'x', 'y', 'y', 'z', 'z']

For many results, eager evaluation is entirely acceptible.
But large results might use a lot of memory or even exceed
the memory available on your system.

Lazy Evaluation

When a Result is lazily evaluated, its individual elements are
computed one-at-a-time as they are needed. In fact, the primary
purpose of a Result object is to facilitate lazy evaluation when
possible.

Use a for loop to lazily evaluate the result and get its
contents:

>>> result = select('A').execute()
>>> for element in result:
... print(element)
...
...
x
x
y
y
z
z

For each iteration of the loop in the above example, the next
element is evaluated and the previous element is discarded. At
no point in time do all of the elements occupy memory together.

Note

When lazily evaluating a Result, you are free to check the
evaltype but it is never actually
used to create an object of that type.

How-To Guide

Many of the following sections use the example CSV from the
tutorials. You can download it here:

example.csv

How To Install Squint

The Squint package is tested on Python 2.7, 3.4 through 3.8, PyPy,
and PyPy3; and is freely available under the Apache License, version 2.

The easiest way to install squint is to use pip [https://pip.pypa.io]:

pip install squint

To upgrade an existing installation, use the “--upgrade” option:

pip install --upgrade squint

The development repository for squint is hosted on
GitHub [https://github.com/shawnbrown/squint]. If you need bug-fixes
or features that are not available in the current stable release, you can
“pip install” the development version directly from GitHub:

pip install --upgrade https://github.com/shawnbrown/squint/archive/master.zip

All of the usual caveats for a development install should
apply—only use this version if you can risk some instability
or if you know exactly what you’re doing. While care is taken
to never break the build, it can happen.

How To Convert an Element’s Type

To change the data type of individual elements, use the map() method to apply a type to each element.

In the following example, we convert string elements into the float
type, map(float):

>>> import squint
>>>
>>> select = squint.Select('example.csv')
>>>
>>> select('C').map(float)
Query(<squint.Select object at 0x7fcaac15>, ['C']).map(float)
---- preview ----
[20.0, 30.0, 10.0, 20.0, 10.0, 10.0]

In the preview above, we see that every element in column C
has been converted into a float [https://docs.python.org/3/library/functions.html#float] value.

How To Convert a Container’s Type

While you can control a container’s type during selection, there
are times when you will want to convert a container’s type after
selection. To do this, use the apply() method
to apply a container type to the entire group of elements.

In the following example, we convert a list of elements into a tuple
of elements, apply(tuple):

>>> import squint
>>>
>>> select = squint.Select('example.csv')
>>>
>>> select('A').apply(tuple)
Query(<squint.Select object at 0x7f8ed8b6>, ['A']).apply(tuple)
---- preview ----
('x', 'x', 'y', 'y', 'z', 'z')

In the preview above, we see that our query returns a tuple [https://docs.python.org/3/library/stdtypes.html#tuple]
instead of a list.

How To Select Single-Item Inner-Containers

To specify a single-item inner-container, you must provide both
inner- and outer-types explicitly.

For example, select single-item sets [https://docs.python.org/3/library/stdtypes.html#set] of elements
from column B, [{'B'}]:

>>> import squint
>>>
>>> select = squint.Select('example.csv')
>>>
>>> select([{'B'}])
Query(<squint.Select object at 0x7ff9292f>, [{'B'}])
---- preview ----
[{'foo'}, {'foo'}, {'foo'}, {'bar'}, {'bar'}, {'bar'}]

This is necessary because a single-item container—when used by
itself—specifies an outer-container type. You cannot use the
implicit list [https://docs.python.org/3/library/stdtypes.html#list] shorthand demonstrated elsewhere in the
documentation.

How To Select Exotic Data Types

Most examples demonstrate the use of squint’s Select class with
list, tuple and set types, but it’s possible to use a wide variety of
other containers, too. For instance, frozensets [https://docs.python.org/3/library/stdtypes.html#frozenset],
deques [https://docs.python.org/3/library/collections.html#collections.deque], namedtuples [https://docs.python.org/3/library/collections.html#collections.namedtuple], etc. can be used the same way you would
use any of the previously mentioned types.

For example, select a deque [https://docs.python.org/3/library/collections.html#collections.deque] of
namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple] elements from
columns A and B, deque([ntup('A', 'B')]):

>>> from collections import deque
>>> from collections import namedtuple
>>> import squint
>>>
>>> select = squint.Select('example.csv')
>>>
>>> ntup = namedtuple('ntup', ['first', 'second'])
>>>
>>> select(deque([ntup('A', 'B')]))
Query(<squint.Select object at 0x7f4cf01c>, deque([ntup(first='A', second='B')]))
---- preview ----
deque([ntup(first='x', second='foo'), ntup(first='x', second='foo'),
 ntup(first='y', second='foo'), ntup(first='y', second='bar'),
 ntup(first='z', second='bar'), ntup(first='z', second='bar')])

Note

You can mix and match container types as desired, but the normal object
limitations still apply. For example, sets and dictionary keys can only
contain immutable [http://docs.python.org/3/glossary.html#term-immutable]
types (like str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset],
etc.).

API Reference

Select

	
class squint.Select(objs=None, *args, **kwds)

	A class to quickly load and select tabular data. The given
objs, *args, and **kwds, can be any values supported
by get_reader(). Additionally, objs can be a list
of supported objects or a string with shell-style wildcards.
If objs is already a reader-like object, it will be used as
is.

Load a single file:

select = datatest.Select('myfile.csv')

Load a reader-like iterable:

select = datatest.Select([
 ['A', 'B'],
 ['x', 100],
 ['y', 200],
 ['z', 300],
])

Load multiple files:

select = datatest.Select(['myfile1.csv', 'myfile2.csv'])

Load multple files using a shell-style wildcard:

select = datatest.Select('*.csv')

When multiple sources are loaded into a single Select,
data is aligned by fieldname and missing fields receive
empty strings:

[image: Data can be loaded from multiple files.]

	
load_data(objs, *args, **kwds)

	Load data from one or more objects into the Select. The
given objs, *args, and **kwds, can be any values
supported by the Select class initialization.

Load a single file into an empty Select:

select = datatest.Select() # <- Empty Select.
select.load_data('myfile.csv')

Add a single file to an already-populated Select:

select = datatest.Select('myfile1.csv')
select.load_data('myfile2.xlsx', worksheet='Sheet2')

Add multiple files to an already-populated Select:

select = datatest.Select('myfile1.csv')
select.load_data(['myfile2.csv', 'myfile3.csv'])

	
fieldnames

	A list of field names used by the data source.

	
__call__(columns=None, **where)

	After a Select has been created, it can be called like a
function to select fields and return an associated Query
object.

The columns argument serves as a template to define the values
and data types selected. All columns selections will be wrapped
in an outer container. When a container is unspecified, a
list [https://docs.python.org/3/library/stdtypes.html#list] is used as the default:

select = datatest.Select('example.csv')
query = select('A') # <- selects a list of values from 'A'

When columns specifies an outer container, it must hold only
one field—if a given container holds multiple fields, it is
assumed to be an inner container (which gets wrapped in the
default outer container):

query = select(('A', 'B')) # <- selects a list of tuple
 # values from 'A' and 'B'

When columns is a dict [https://docs.python.org/3/library/stdtypes.html#dict], values are grouped by
key:

query = select({'A': 'B'}) # <- selects a dict with
 # keys from 'A' and
 # values from 'B'

When columns is omitted, the object’s fieldnames are used instead.

Optional where keywords can narrow the selected data to
matching rows. A key must specify the field to check and a
value must be a predicate object (see Predicate
for details). Rows where the predicate is a match are
selected and rows where it doesn’t match are excluded:

select = datatest.Select('example.csv')
query = select({'A'}, B='foo') # <- selects only the rows
 # where 'B' equals 'foo'

See the Making Selections tutorial for step-by-step
examples.

	
create_index(*columns)

	Create an index for specified columns—can speed up
testing in many cases.

If you repeatedly use the same few columns to group or
filter results, then you can often improve performance by
adding an index for these columns:

select.create_index('town')

Using two or more columns creates a multi-column index:

select.create_index('town', 'postal_code')

Calling the function multiple times will create multiple
indexes:

select.create_index('town')
select.create_index('postal_code')

Note

Indexes should be added with discretion to tune
a test suite’s over-all performance. Creating
several indexes before testing even begins could
lead to longer run times so use indexes with care.

Query

	
class squint.Query(columns, **where)

	
class squint.Query(select, columns, **where)

	A class to query data from a source object. Queries can be
created, modified, and passed around without actually computing
the result—computation doesn’t occur until the query object
itself or its fetch() method is called.

The given columns and where arguments can be any values
supported by Select.__call__().

Although Query objects are usually created by calling an existing Select, it’s
possible to create them independent of any single data source:

query = Query('A')

	
classmethod from_object(obj)

	Creates a query and associates it with the given object.

mylist = [1, 2, 3, 4]
query = Query.from_object(mylist)

If obj is a Query itself, a copy of the original query
is created.

AGGREGATE METHODS

Aggregate methods operate on a collection of elements and produce
a single result.

	
sum()

	Get the sum of non-None elements.

	
avg()

	Get the average of non-None elements. Strings and other
objects that do not look like numbers are interpreted as 0.

	
min()

	Get the minimum value from elements.

	
max()

	Get the maximum value from elements.

	
count()

	Get the count of non-None elements.

FUNCTIONAL METHODS

Functional methods take a user-provided function and use it
to perform a specified procedure.

	
apply(function)

	Apply function to entire group keeping the resulting data.
If element is not iterable, it will be wrapped as a single-item
list.

	
map(function)

	Apply function to each element, keeping the results.
If the group of data is a set type, it will be converted
to a list (as the results may not be distinct or hashable).

	
filter(predicate=True)

	Filter elements, keeping only those values that match the
given predicate. When predicate is True, this method keeps
all elements for which bool [https://docs.python.org/3/library/functions.html#bool] returns True (see
Predicate for details).

	
reduce(function, initializer_factory=None)

	Reduce elements to a single value by applying a function
of two arguments cumulatively to all elements from left to
right. If the optional initializer_factory is present, it
is called without arguments to provide a value that is placed
before the items of the sequence in the calculation, and serves
as a default when the sequence is empty. If initializer_factory
is not given and sequence contains only one item, the first
item is returned.

	
starmap(function)

	

DATA HANDLING METHODS

Data handling methods operate on a collection of elements by
reshaping or otherwise reformatting the data.

	
distinct()

	Filter elements, removing duplicate values.

	
flatten()

	Flatten dictionary into list of tuple rows. If data is not
a dictionary, the original values are returned unchanged.

	
unwrap()

	Unwrap single-item sequences or sets.

DATA OUTPUT METHODS

Data output methods evaluate the query and return its results.

	
execute(source=None, optimize=True)

	A Query can be executed to return a single value or an
iterable Result appropriate for lazy evaluation:

query = source('A')
result = query.execute() # <- Returns Result (iterator)

Setting optimize to False turns-off query optimization.

	
fetch()

	Executes query and returns an eagerly evaluated result.

	
to_csv(file, fieldnames=None, **fmtparams)

	Execute the query and write the results as a CSV file
(dictionaries and other mappings will be seralized).

The given file can be a path or file-like object;
fieldnames will be printed as a header row; and
fmtparams can be any values supported by
csv.writer() [https://docs.python.org/3/library/csv.html#csv.writer].

When fieldnames are not provided, names from the query’s
original columns argument will be used if the number of
selected columns matches the number of resulting columns.

Result

	
class squint.Result(iterable, evaltype, closefunc=None)

	A simple iterator that wraps the results of Query
execution to facilitate lazy evaluation of the resulting data.

Although Result objects are usually constructed automatically,
it’s possible to create them directly:

iterable = iter([...])
result = Result(iterable, evaltype=list)

Warning

When iterated over, the iterable must yield only those
values necessary for constructing an object of the given
evaltype and no more. For example, when the evaltype is a
set, the iterable must not contain duplicate or unhashable
values. When the evaltype is a dict [https://docs.python.org/3/library/stdtypes.html#dict] or other
mapping, the iterable must contain unique key-value pairs
or a mapping.

	
evaltype

	The type of instance returned by the
fetch method.

	
fetch()

	Evaluate the entire iterator and return its result:

result = Result(iter([...]), evaltype=set)
result_set = result.fetch() # <- Returns a set of values.

When evaluating a dict [https://docs.python.org/3/library/stdtypes.html#dict] or other mapping type, any
values that are, themselves, Result objects will
also be evaluated.

	
__wrapped__

	The underlying iterator—useful when introspecting
or rewrapping.

Predicate

Squint can use Predicate objects for narrowing and filtering
selections.

	
class squint.Predicate(obj, name=None)

	A Predicate is used like a function of one argument that
returns True when applied to a matching value and False
when applied to a non-matching value. The criteria for matching
is determined by the obj type used to define the predicate:

	obj type

	matches when

	function

	the result of function(value)
tests as True

	type

	value is an instance of the type

	re.compile(pattern)

	value matches the regular
expression pattern

	True

	value is truthy (bool(value)
returns True)

	False

	value is falsy (bool(value)
returns False)

	str or non-container

	value is equal to the object

	set

	value is a member of the set

	tuple of predicates

	tuple of values satisfies
corresponding tuple of
predicates—each according
to their type

	... (Ellipsis
literal)

	(used as a wildcard, matches
any value)

Example matches:

	obj example

	value

	matches

	def iseven(x):
 return x % 2 == 0

	4

	Yes

	9

	No

	float

	1.0

	Yes

	1

	No

	re.compile('[bc]ake')

	'bake'

	Yes

	'cake'

	Yes

	'fake'

	No

	True

	'x'

	Yes

	''

	No

	False

	''

	Yes

	'x'

	No

	'foo'

	'foo'

	Yes

	'bar'

	No

	{'A', 'B'}

	'A'

	Yes

	'C'

	No

	('A', float)

	('A', 1.0)

	Yes

	('A', 2)

	No

	('A', ...)

Uses ellipsis wildcard.

	('A', 'X')

	Yes

	('A', 'Y')

	Yes

	('B', 'X')

	No

Example code:

>>> pred = Predicate({'A', 'B'})
>>> pred('A')
True
>>> pred('C')
False

Predicate matching behavior can also be inverted with the inversion
operator (~). Inverted Predicates return False when applied
to a matching value and True when applied to a non-matching
value:

>>> pred = ~Predicate({'A', 'B'})
>>> pred('A')
False
>>> pred('C')
True

If the name argument is given, a __name__ attribute is
defined using the given value:

>>> pred = Predicate({'A', 'B'}, name='a_or_b')
>>> pred.__name__
'a_or_b'

If the name argument is omitted, the object will not have a
__name__ attribute:

>>> pred = Predicate({'A', 'B'})
>>> pred.__name__
Traceback (most recent call last):
 File "<input>", line 1, in <module>
 pred.__name__
AttributeError: 'Predicate' object has no attribute '__name__'

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 squint	
 Simple query interface for tabular data.

Index

 _
 | A
 | C
 | D
 | E
 | F
 | L
 | M
 | P
 | Q
 | R
 | S
 | T
 | U

_

 	
 	__call__() (squint.Select method)

 	
 	__wrapped__ (squint.Result attribute)

A

 	
 	apply() (squint.Query method)

 	
 	avg() (squint.Query method)

C

 	
 	count() (squint.Query method)

 	
 	create_index() (squint.Select method)

D

 	
 	distinct() (squint.Query method)

E

 	
 	evaltype (squint.Result attribute)

 	
 	execute() (squint.Query method)

F

 	
 	fetch() (squint.Query method)

 	(squint.Result method)

 	fieldnames (squint.Select attribute)

 	
 	filter() (squint.Query method)

 	flatten() (squint.Query method)

 	from_object() (squint.Query class method)

L

 	
 	load_data() (squint.Select method)

M

 	
 	map() (squint.Query method)

 	
 	max() (squint.Query method)

 	min() (squint.Query method)

P

 	
 	Predicate (class in squint)

Q

 	
 	Query (class in squint)

R

 	
 	reduce() (squint.Query method)

 	
 	Result (class in squint)

S

 	
 	Select (class in squint)

 	squint (module)

 	
 	starmap() (squint.Query method)

 	sum() (squint.Query method)

T

 	
 	to_csv() (squint.Query method)

U

 	
 	unwrap() (squint.Query method)

 _static/down-pressed.png

_static/down.png

_static/comment.png

_static/development_build.jpg
This development build is 100% bug-proof.

4
Only to get the benefit of it, you REALLY
need to be sitting at my end of the stream.

_static/minus.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Squint: Simple query interface for tabular data.

 		
 Tutorials

 		
 Making Selections

 		
 Get Started

 		
 Inspect Field Names

 		
 Select Elements

 		
 Select Groups of Elements

 		
 Narrowing a Selection

 		
 Getting the Data Out

 		
 Building Queries

 		
 Get Started

 		
 Creating a Query Object

 		
 Aggregate Methods

 		
 Functional Methods

 		
 Data Handling Methods

 		
 Data Output Methods

 		
 Method Chaining

 		
 Using Results

 		
 Get Started

 		
 Creating a Result Object

 		
 The evaltype Attribute

 		
 Eager Evaluation

 		
 Lazy Evaluation

 		
 How-To Guide

 		
 How To Install Squint

 		
 How To Convert an Element’s Type

 		
 How To Convert a Container’s Type

 		
 How To Select Single-Item Inner-Containers

 		
 How To Select Exotic Data Types

 		
 API Reference

 		
 Select

 		
 Query

 		
 Result

 		
 Predicate

_static/up-pressed.png

_static/up.png

